EECS 2077 Test #1, Fall 2013

Name:

#1	/25 pts	Allowed materials: 1 p	age of a 1-sided equations sheet, writing utensil, calculator.				
#2_	/25 pts	Remember – we use cgs units! Centimeter/gram/second.					
#3_	/25 pts	kT = 0.026 eV (300 K)	$\epsilon_0 = 8.854 \times 10^{-14} \text{ F/cm}$				
#4	/25 pts	$q = 1.6 \times 10^{-19} \text{ C}$	$n_i=1.5 x 10^{10} / cm^3$				
		*					
Optional Feedback							

o peronar i ceubuch					
Rate the length of this test:	short 🗌	long 🗌	OK		
Rate the difficulty of this test:	easy 🗌	hard 🗌	OK		

1.) 25 pts. Questions related to ideal diodes. Read all parts before you start to draw.

a) [8 pts] Using a solid line, draw the reverse and forward IV characteristic for a pn diode.

b) [8 pts] Using a dotted line, draw the reverse and forward IV characteristics for a p+n diode.

c) [9 pts] Simplify and rewrite the equation below for the case of a n+p diode.

$$qA\left(\frac{L_p}{\tau_p}p_n + \frac{L_n}{\tau_n}n_p\right)\left(e^{\frac{qV}{kT}} - 1\right)$$

Name:____

2.) 25 pts. Some short answer questions.

a) Requires that particles have a charge in order to be moved. (5 pts.)

DRIFT DIFFUSION BOTH NEITHER

b) Heavily doped diodes (p+ and n+) will typically be dominated by this type of breakdown. (5 pts.)

ZENER AVALANCE BOTH NEITHER

c) What are the units for q/kT in the equation shown below? (5 pts.)

qV/kT, units are: _____

d) Write out the proper units for EACH term in the current density (A/cm^2) equation below. (5 pts)

 $qD_p \frac{dp(x)}{dx}$

e) Exists for the Schottky diode shown below for the case of positive voltage applied to the metal. (5 pts)

DRIFT DIFFUSION BOTH NEITHER

3) 25 pts. An ideal Si p+n junction at 300K has the following parameters (you might not need them all).

<u>p-side:</u>	<u>n-side:</u>	General parameters
$Na=10^{17}/cm^3$	$Nd=10^{15}/cm^{3}$	$\epsilon_{Si}=11.8$
Dn=18 cm ^{2/} sec	$Dp=25 \text{ cm}^{2/\text{sec}}$	
$Ln=10^{-3}$ cm	$Lp=10^{-2}$ cm	

a) [15 pts] What is the current density (A/cm²) across the junction at an applied reverse bias of -3V?

b) [10 pts] What is the current density (A/cm²) across the junction at a forward bias of 0.6? V?

Name:

4.) 25 pts. Some more basic/fundamental semiconductor questions:

a) Below the device below, plot E-field vs. the distance, assume the same axis for distance (moving from left to right). (10 pts)

b) When we dope Si with Boron, explain in 1-2 sentences maximum how/why we get a hole (10 pts)

c) Explain with ONE word, and one word only, why when we dope a semiconductor heavily p-type, the minority carrier electrons decrease. (5 pts)

EECS 2077 Test #1, Fall 2013

Extra Space

Name:_____